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Abstract

Assimilation of in situ and satellite data in mechanistic terrestrial ecosystem models
helps to constrain critical model parameters and reduce uncertainties in the simulated
energy, water and carbon fluxes. So far the assimilation of eddy covariance measure-
ments from flux-tower sites has been conducted mostly for individual sites (“single-5

site” optimization). Here we develop a variational data assimilation system to optimize
21 parameters of the ORCHIDEE biogeochemical model, using net CO2 flux (NEE)
and latent heat flux (LE) measurements from twelve temperate deciduous broadleaf
forest sites. We assess the potential of the model to simulate, with a single set of in-
verted parameters, the carbon and water fluxes at these 12 sites. We compare the10

fluxes obtained from this “multi-site” (MS) optimization to those of the prior model, and
of the “single-site” (SS) optimizations. The model-data fit analysis shows that the MS
approach decreases the daily root mean square difference (RMS) to observed data
by 22 %, which is close to the SS optimizations (25 % on average). We also show
that the MS approach distinctively improves the simulation of the ecosystem respi-15

ration (Reco), and to a lesser extent the gross carbon flux (GPP), although we only
assimilated net CO2 flux. A process-oriented parameter analysis indicates that the MS
inversion system finds a unique combination of parameters which is not the simple
average of the different SS set of parameters. Finally, in an attempt to validate the opti-
mized model against independent data, we observe that global scale simulations with20

MS optimized parameters show an enhanced phase agreement between modeled leaf
area index (LAI) and satellite-based measurements of normalized difference vegetation
index (NDVI).

1 Introduction

Terrestrial ecosystem models have been a tool of growing importance in order to un-25

derstand and simulate the behavior of land ecosystems and their response to various
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disturbances, be it natural or anthropogenic. Mechanistic terrestrial ecosystem models
are widely used to assess the current land carbon balance (Sitch et al., 2008) and to
predict its future evolution under climate change (Friedlingstein et al., 2006; Cox et al.,
2000), as a major driver of the future climate itself. In this context, there has been a
growing effort to evaluate and validate the simulated carbon fluxes and stocks against in5

situ or remote sensing observations. In this study, we investigate the potential of eddy-
covariance flux measurements from a dozen FLUXNET sites (http://fluxnet.ornl.gov/;
Williams et al., 2009) to improve a global process-based ecosystem model, OR-
CHIDEE (Krinner et al., 2005). These data provide near-continuous in situ measure-
ments of carbon dioxide, water and energy fluxes; measurements are currently con-10

ducted at more than 500 sites, spanning a wide range of climate regimes and vegeta-
tion types, worldwide. Here, we focus on modeling deciduous broadleaf forests, which
are particularly well represented in the FLUXNET database.

The discrepancies between the fluxes simulated by terrestrial biosphere models
and the observations have four main origins: errors in flux measurements, errors in15

meteorological forcings, error in structural equations of the model (including missing
processes), and inadequate calibration of the model parameters. While the first two
types of error are foreign to the biosphere model itself, the last two items are crucial
to improve model simulations. Most global biosphere models describe the terrestrial
ecosystems with a small number of categories, referred to as Plant Functional Types20

(PFT, usually on the order of 10–15). With this classification each PFT is considered
sufficiently homogeneous to be described by a single set of equations and parameters
at the global scale. In this context, the choice of a representative value for each param-
eter becomes rather difficult and may be a critical step that adds significant error to the
simulated fluxes for a given PFT.25

Numerous studies in various types of ecosystem have illustrated the capacity of
data assimilation to provide optimized sets of parameters that significantly improve the
model-data fit (see review by Williams et al., 2009). Many of these efforts have used
eddy covariance measurements from flux towers to improve their model. Initial studies
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focused on individual sites to investigate the potential for carbon, latent heat and sensi-
ble heat flux measurements to serve as model constraints (Braswell et al., 2005; Knorr
and Kattge, 2005; Santaren et al., 2007; Wang et al., 2001, 2007). However, the small
spatial footprint of each flux tower (a few hectares) often resulted in model parameters
overly tuned to the specificities of a particular site. A few recent studies have sought5

independent evaluation using parameters optimized at one location when simulations
are run at other sites (Medvigy et al., 2009; Verbeeck et al., 2011). This last approach
is useful to evaluate the potential of a given model structure to simulate the spatial
heterogeneity in the fluxes (its genericity). Complementarily, Groenendijk et al. (2011)
optimized the parameters of a photosynthesis model using groups of sites within and10

across PFTs. Their results show a large intra-PFT variability of model parameters,
which suggests that perhaps the PFT concept needs to be re-defined.

The present study further investigates the potential of the simultaneous assimilation
of carbon net ecosystem exchange (NEE) and latent heat (LE) flux measurements from
an ensemble of flux towers situated in temperate deciduous broadleaf forests (DBF).15

We focus on the following questions:

– Can we find a single set of parameters that improves the model-data fit at all sites
(multi-site optimization)?

– How does the multi-site optimization perform in comparison to independent opti-
mizations at each site (single-site optimization)?20

– Which parameters are well constrained by the NEE and LE flux measurements?

– What are the typical time scales of model-data mismatches that are improved by
the optimization and which processes remain poorly captured by the model after
the optimization?

– What is the impact of an optimized set of parameters on a global simulation? Can25

we evaluate changes in the simulated vegetation activity (using the new parame-
ters) with remote sensing data?
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In order to investigate these different questions, we use the following methodology:
we selected a set of representative DBF sites for which we would assimilate daily NEE
and LE (see Sect. 2.2). We present in Sect. 2.3 the optimization approach and the
set of parameters that are estimated. Section 2.4 describes the different optimiza-
tions/sensitivity tests that are performed. Finally, we introduce in Sect. 2.5 the addi-5

tional data used for the posterior evaluation of the optimization, at the local and the
global scale.

Throughout the analysis, the results of the model after the multi-site optimization
(hereafter referred as MS) are compared with those of the model optimized indepen-
dently at each measurement site (single-site optimization, hereafter referred as SS).10

The results section is divided into five parts. The overall performance of the optimiza-
tion (i.e. model-data mismatch) is first evaluated at different time scales (Sect. 3.1).
Then, we analyze the optimized parameters for each biophysical process separately
(Sect. 3.2). To this end, the Bayesian inversion scheme allows us to use and interpret
statistical information regarding both prior and posterior parameter error correlations.15

The relevancy of using MS parameters rather than extrapolating a combination of SS
parameters is discussed in Sect. 3.3, while the choice of the assimilated data is evalu-
ated in Sect. 3.4. We further compare the gross primary productivity (GPP) and ecosys-
tem respiration (Reco) of the optimized model against GPP and Reco derived from in situ
observations at the flux towers (Sect. 3.5.1). Finally, we investigate the impact of the20

optimized parameters at the global scale, using remote sensing observations of the
vegetation activity (Sect. 5.2).

2 Methods and data

2.1 ORCHIDEE model

The biogeochemical vegetation model used in this study is ORCHIDEE (Krinner et25

al., 2005). It calculates the water, energy and carbon fluxes between the land surface
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and the atmosphere at a half-hourly time step. The exchange of carbon and water
during photosynthesis and the energy balance are treated at the smallest time scale
(30 min), while carbon allocation, autotrophic respiration, foliar onset and senescence,
mortality and soil organic matter decomposition are computed on a daily time step.
The equations involving the parameters optimized in the present study can be found5

in the results section. More extensive descriptions of ORCHIDEE are given elsewhere
(Ducoudre et al., 1993; Krinner et al., 2005; Santaren et al., 2007; Verbeeck et al.,
2011).

As in most biogeochemical models, the vegetation is grouped into several PFTs, 13
in the case of ORCHIDEE. Except for few processes, such as phenology (Botta et al.,10

2000), the equations governing the different processes are generic, but with specific
parameters for each PFT. In the present study, ORCHIDEE is mainly used in a “grid-
point mode” at one given location, forced with the corresponding local half-hourly gap-
filled meteorological measurements obtained at the flux towers. Only in Sect. 3.5.2,
ORCHIDEE is run at the global scale, forced by the global ERA-Interim meteorology15

(http://www.ecmwf.int/research/era/do/get/era-interim). Importantly, the modeled car-
bon pools are brought to equilibrium before each run. This spin up, achieved by cycling
the meteorological forcing over a long period (1300 yr), ensures a net carbon flux close
to zero over annual-to-decadal timescales.

2.2 Eddy covariance flux data20

The present study focuses on one single type of ecosystem: temperate deciduous
broadleaved forests (DBF). We selected twelve measurement sites (Fig. 1 and Table
1), with a “footprint” that corresponds to a vegetation cover represented by at least
70 % of DBF, the rest being mostly C3 grasslands or evergreen needleleaf trees. The
eddy-covariance flux data used are part of the FluxNet network, with standard flux data25

processing methodologies (Papale et al., 2006; Reichstein et al., 2005). We use gap-
filled measured fluxes of net ecosystem exchange (NEE) and latent heat fluxes (LE)
at half hourly time step to compute daily means. We choose to assimilate daily mean
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observations and not half hourly measurements in order to focus the optimization on
time scales ranging from synoptic to seasonal and inter-annual variations, and to avoid
the complicated treatment of the error correlation between half hourly data (Lasslop et
al., 2008). Note that individual days were not included in the assimilation if measure-
ments were missing for more than 20 % of the 48 half hourly periods in that day.5

Regarding the error statistics, the data error covariance matrix R (used in the cost
function, Eq. (1) in Sect. 2.3) should include both the error on the measurements and
the error on the model process representation. The random measurement error on the
observed fluxes is known not to be constant and can be estimated as the residual of
the gap-filling algorithm (Richardson et al., 2008). On the other hand, model errors10

are rather difficult to assess and may be much larger than the measurement error
itself. Therefore, we chose to focus on this structural error whose correlations cannot
be neglected (Chevallier et al., 2006). However, because of the difficulty in evaluating
the structure of these errors, we keep R diagonal and, as compensation, artificially
inflate the variances (Chevallier, 2007). The variances in R are here defined as the15

mean squared difference between the prior model and the observations, multiplied by
a factor kσ , as in Bacour et al. (2012). The value of kσ is fixed to 30, which for the error
propagation is equivalent to assimilating one observation every 30 days.

2.3 Data assimilation system

The model parameters are optimized using a variational data assimilation method.20

Within this Bayesian inversion framework, we account for uncertainties regarding the
model, the observations, and the prior parameters. The approach is based on Santaren
et al. (2007) and Bacour et al. (2012). Assuming Gaussian distribution for errors on both
the parameters and the observations, the optimized set of parameters corresponds to
the minimization of the following cost function J(x) (Tarantola, 1987):25

J (x) =
1
2

[
(y − H(x))t R−1 (y − H(x)) + (x − xb)t P−1

b (x − xb)
]

, (1)
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which contains both the misfit between modeled and observed fluxes, and the misfit
between a priori and optimized parameters. x is the vector of unknown parameters,
xb the background parameter values, H(x) the model output, and y the vector of ob-
served fluxes. Pb describes the prior parameter error variances/covariances, while R
contains the prior data error variances/covariances, as described in Sect. 2.2. Both5

matrices are diagonal since uncertainties are supposed to be uncorrelated between
parameters/observations, and all parameters/observations are identically weighted in
the cost function. The cost function is minimized iteratively using a gradient-based al-
gorithm called L-BFGS, which provides the possibility to prescribe boundaries for each
parameter (Byrd et al., 1995). The standard deviation for each parameter used for Pb10

variances is equal to 40 % of the range between lower and higher boundaries, which
have been carefully specified. The construction of R is described in Sect. 2.2.

At each iteration, the gradient of the cost function J(x) is computed, with respect to
all the parameters. For most of the parameters we use the Tangent Linear (TL) model
of ORCHIDEE to compute the gradient, generated with the automatic differentiator15

tool TAF (Transformation of Algorithms in Fortran, see Giering et al., 2005). Some
processes in the model are described by functions that are not smooth. Examples
include the threshold functions controlling the temperature dependence of foliage onset
and senescence. Because the TL model cannot be applied in such cases, we used a
finite difference method where necessary.20

Once the minimum of the cost function is reached, the posterior parameter er-
ror variance/covariance matrix Pa is explicitly calculated from the prior error vari-
ance/covariance matrices ( Pb and R) and the Jacobian of the model at the minimum
of J (H∞), using the linearity assumption (Tarantola, 1987):

Pa =
[
Ht
∞R−1H∞ + P−1

b

]−1
. (2)25

Large absolute values of error correlation indicate that the observations do not provide
enough information to distinguish between the effects of each corresponding parameter
throughout the optimization.
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2.4 Performed optimizations: multi-site vs. single-site

One goal is to optimize a mean set of parameters using information from several mea-
surements sites simultaneously (MS approach) and to compare the results with opti-
mizations conducted separately for each site (SS approach). We thus have extended
the site-scaled inversion algorithm used in Bacour et al. (2012) to include the obser-5

vations from all sites and to share a common set of parameters in the optimization
procedure. Concerning the parameters, we distinguish two cases: the site-specific pa-
rameters that are only relevant for a particular site (i.e. that cannot be applied to other
sites) and the generic parameters that apply to all sites. For this study, we choose one
site-specific parameter related to the site land-use history: a multiplier of different soil10

carbon pool contents. The list of optimized ORCHIDEE parameters is given in Table 2.
We performed the following optimizations, including sensitivity tests:

– 12 reference SS optimizations (21 parameters for each)

– 1 reference MS optimization (20 generic parameters, 12 site-specific)

– 6 MS optimizations with different parameters related to heterotrophic respiration15

left out

– 1 MS optimization with only NEE data (20 generic parameters, 12 site-specific)

– 1 MS optimization with only LE data (14 generic parameters).

2.5 Additional data used for model evaluation

2.5.1 Photosynthesis and respiration20

The model is evaluated at the sites using the two components of the NEE flux: the
gross ecosystem productivity GEP and the ecosystem respiration Reco, estimated via
the flux-partitioning method described in Reichstein et al. (2005). This method extrap-
olates nighttime measurement of NEE, representing Reco, into daytime Reco using a
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short-term-calibrated temperature response function. GEP is then derived as the dif-
ference between Reco and NEE. Due to the small quantitative difference between GEP
and the gross primary productivity (GPP) (Stoy et al., 2006), from now on we use the
term “GPP” instead. Similarly to NEE and LE, we also use daily-averaged data. We
acknowledge GPP and Reco are not fully independent data (with respect to the as-5

similated NEE) and are essentially model-derived estimates that are to some degree
conditional on our underlying assumptions, but note that these concerns have been
largely addressed in previous analyses (e.g. Desai et al., 2008).

2.5.2 MODIS remote sensing NDVI

In order to evaluate if the optimized set of parameters improves the phenology of the10

model at the global scale, we use the Normalized Difference Vegetation Index (NDVI)
estimated from measurements made by the MODIS instrument, aboard the Terra satel-
lite (see Sect. 3.5.2). MODIS measures irradiances (converted to reflectances) which
are first corrected for atmospheric absorption and scattering (Vermote et al., 2002),
then from directional effects (Vermote et al., 2009), before NDVI is calculated (Maignan15

et al., 2011). The result is a daily product with 5 km spatial resolution. Averaging is used
to match the ERA-Interim resolution.

3 Results and discussion

3.1 Model-data fit: multi-site versus single-site optimization

Throughout this section, the results of the MS optimization are systematically com-20

pared to those given by the SS optimization.
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3.1.1 Overall model-data fit

To evaluate the performance of the different optimizations, we first look at the misfit be-
tween the model output and the assimilated observations for three cases: prior model,
MS optimization and SS optimization. Figure 2 shows the seasonal cycles of NEE and
LE at two of the twelve sites used in this study. For the sake of clarity, only two years of5

data are shown, and data have been smoothed with a 15-day moving average window.
Plots with all years at all the sites can be found in the Appendix A. The brackets give
the average annual carbon budget (gC m−2) and the averaged LE flux (W m−2). Lastly,
the error bars on the left part represent for both fluxes the total uncertainty averaged
over all the period:10

σtotal =
√
σ2

param + σ2
model, (3)

where σparam is the parameter error contribution in the observation space, while σmodel
represents the structural model error. The former is calculated using the parameter er-
ror covariance matrix and Jacobian matrix of the model, similarly to Eq. (25) in Rayner
et al. (2005). The model error is reported as a standard deviation from posterior analy-15

sis of the error statistics, and is estimated to be 1.6 gC m−2 d−1 (NEE) and 22.5 W m−2

(LE).
NEE shows a significant seasonal cycle with large negative values (uptake) in sum-

mer and positive values (release) during winter, which is captured by the prior model
relatively well. There are however three major types of mismatch:20

– recurrent overestimation of the winter carbon release

– underestimation of the summer carbon uptake at most sites

– significant phase shift at some sites.

The first, and to a certain extent the second, item partly results from the model being
spun up before each simulation, thus forcing the annual carbon budget to be close to25
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zero (see Sect. 2.1). The optimization generally manages to correct the aforementioned
winter bias, and this is clearly visible in the shift of annual carbon budget after both MS
and SS optimizations. The summer uptake is also increased after the optimizations,
but does not always reach the amplitude of the measured NEE. The phase shift is
corrected at some sites, but not consistently at all sites.5

The large LE seasonal cycle, with a peak of evapotranspiration in summer and val-
ues close to zero in winter, is relatively well reproduced by the prior model. The model
tends to overestimate LE in winter (see also Appendix A). This discrepancy is more
pronounced at sites with snow cover (such as JP-Tak and most of the American sites),
most likely because the current model overestimates snow sublimation (Slater et al.,10

2001). The optimizations manage to correct the summer misfit, although less signif-
icantly than for NEE. The winter misfit of LE is not corrected, as we did not include
specific parameters of snow build up and sublimation.

Thus, we found that (1) the MS parameter set significantly improves the model-data
fit at most sites, and (2) the results of the MS optimization are often comparable to15

those of the SS optimizations.

3.1.2 Model-data fit as a function of time scale

To further evaluate and quantify the optimization performances, we analyze the model-
data misfit for different time scales: daily, monthly anomaly, monthly average, seasonal
average, and yearly average (Fig. 3). The model-data misfit is quantified using the root20

mean squared difference (RMS), calculated for each site from the following quantities:
xdaily = x

xmonthly anomaly = 〈x〉month − 〈〈x〉month〉all years
xmonthly average = 〈x〉month − 〈x〉year
xseasonal average = 〈x〉season
xyearly average = 〈x〉year

, (4)
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where x is either the observation or the model output vector, 〈x〉month is the average
over a month, 〈〈x〉month〉all years is the average of 〈x〉month over all years available at a
given site, 〈x〉season the average over one season (DJF, MAM, JJA or SON), and 〈x〉year
is the average over the year. On the daily timescale, the RMS is calculated for each
site (first row in Fig. 3); while at other timescales all the site-years are used together in5

one single RMS per case (second and third rows) to increase statistical power.
A large RMS reduction is found on yearly average, where the RMS of NEE is reduced

by half from the prior (49 % decrease in MS case, 59 % in SS case). More specifi-
cally, the best improvement of the fit happens in winter (Fig. 3, second row), where the
RMS is reduced by an even larger amount (MS: −55 %, SS: −69 %). The averaged net10

annual NEE shifts from −39 gC m−2 yr−1 (prior model) to −260 gC m−2 yr−1 (MS) and
−251 gC m−2 yr−1 (SS), which is much closer to the observed value (−344 gC m−2 yr−1).
Regarding LE, the RMS is decreased by 29 % (MS) versus 45 % (SS) on yearly aver-
age. Seasonal peculiarities are slightly less pronounced than for NEE. Overall, both
MS and SS parameter sets result in significant improvements in annual carbon and15

water budgets.
On the monthly time scales, we distinguish the average and the anomaly. The RMS

reduction on monthly average is significant mostly for NEE (MS: −16 %, SS: −24 %),
becoming smaller in the case of LE (MS: −8 %, SS: −18 %). This indicates that only a
small improvement of the NEE mean seasonal cycle is possible with the current model20

structure, and even less for LE. Regarding the monthly anomaly, we see that neither
the SS nor the MS optimizations bring any significant improvement. However, the inner
monthly interannual variations (RMS between the quantities 〈x〉month and 〈x〉monthall years
introduced in Eq. 4) of NEE and LE are already similar between observations and
prior model: 0.63 gC m−2 d−1 and 6.88 W m−2 against 0.41 gC m−2 d−1 and 7.21 W m−2,25

respectively. We deduce that the current model structure captures a significant part
of the inter-annual variations but no further improvement is given by optimizations.
Therefore, we suggest that the remaining gap could be bridged by taking into account
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the impact of biotic factors and climate anomalies on photosynthesis/respiration in the
model structure and/or the parameterization.

On the daily timescale (raw data used in the optimization), the RMS reduction is 22 %
on average for NEE after the MS optimization, while it is 25 % in the SS case. Concern-
ing LE, the difference between the two optimizations is slightly more significant, with5

an average of 16 % RMS reduction versus 23 % in the SS case. The larger SS/MS
discrepancy observed for LE reflects the fact that the RMS is significantly higher for the
MS case at 3 sites (DK-Sor, FR-Fon and US-UMB).

Overall, the NEE fit is more improved than the LE fit, partly reflecting the larger set of
optimized parameters that are exclusively related to carbon assimilation and respiration10

processes (the focus of this study).

3.2 Level of constrain on the different processes

In the following subsections, we analyze the values and the associated errors of the
relevant parameters for the main simulated processes and we investigate the strengths
and weaknesses of the current model structure. Figure 4 displays the optimized values15

for each parameter, and the error correlations between all parameters in the MS case
can be found in Fig. A13. For each process, the relevant ORCHIDEE equations are
shown.

3.2.1 Parameters of the initial soil carbon pools and heterotrophic respiration

As described in Sect. 3.1.1, the optimization strongly reduces the winter carbon re-20

lease to match the observations, at most sites. In winter, the carbon exchange for DBF
is mainly driven by heterotrophic respiration Rh, here modeled as the sum of the res-
pirations from four litter pools (metabolic and structural, both above and below ground)
and three soil organic matter pools (active, passive and slow),

Rh =
∑

p

αp · Cp · cH · cT
/
τp

, (5)25
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where Cp, αp, τp, cH and cT are the size of the carbon pool, a pool specific partitioning
coefficient based on Parton et al. (1988), the pool specific carbon residence time, the
temperature and humidity control factors, respectively. The initial sizes of the carbon
pools integrate the past input of carbon to the soil and thus all land use history at
the site. These impacts are difficult to account for, and we choose to scale all initial5

soil carbon pool sizes through the optimization procedure with one parameter, KsoilC
(Table 2), as in Santaren et al. (2007) and Carvalhais et al. (2010):

Cp,soil(t0) = Cp,soil(t0) × KsoilC. (6)

cH and cT represent the slowing down of respiration in too dry soils or at low tempera-
tures, respectively:10

cH = max
(

0.25, min
(

1,−1.1 · H2 + HRH,b · H + HRH,c

))
, (7)

cT = min
(

1,Q
T−30

10

10

)
, (8)

where H is the relative humidity of the above-ground litter or the soil, and T is the
surface/soil temperature for the above/below-ground pools. HRH,b, HRH,c, and Q10 are15

critical parameters that are optimized (Table 2).
At most sites, both the MS and SS optimizations lead to similar results, with a

smaller initial pool size (KsoilC lower than 1). This is linked to the spin up procedure
(see Sect. 2.1) that brings the ecosystem to near-equilibrium (no net release or uptake
of carbon). However, most of the selected sites are young growing forests (less than20

90 yr old). Soil carbon content is probably lower in these forests than it would be for a
mature forest. As proposed by Carvalhais et al. (2010), the optimization of soil carbon
pools can alone explain most of the RMS reduction at yearly time scale for NEE. We
have further investigated such hypothesis with 6 MS sensitivity tests where KsoilC, Q10,
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HRH,b, HRH,c, or Q10 +HRH,b +HRH,c, or all four are successively left out (not shown).
Without KsoilC there is a 38.5 % reduction of the model-data RMS at yearly time scale,
a value significantly lower than in the standard case (49 %). A similar degraded per-
formance is found when the three other parameters are simultaneously left out of the
optimization, whereas there is almost no change (as compared to the standard MS5

case) when each one of them is individually excluded. When the four parameters are
not considered, the optimization procedure becomes significantly less efficient with a
17 % RMS reduction on yearly average. With these tests, we conclude that the ini-
tial sizes of the carbon pools have the highest individual leverage upon the simulation
of the annual carbon mean flux, but the parameters controlling the temperature and10

humidity dependences of the respiratory processes also play an important role when
combined together.

The MS optimization results in an increased value of Q10, which represents a middle
ground between the spread of SS values. Below 30 ◦C, the temperature control factor
cT is a decreasing function of Q10 (Eq. 8), and so is the heterotrophic respiration. Re-15

garding the humidity control factor cH, both parameters, HRH,b and the offset HRH,c,
are decreased after the MS optimization (Fig. 4), reflecting the trend of most SS opti-
mizations. Overall, we observe a significant reduction of Rh at 10 out of 12 sites after
the MS optimization (not shown). Note that errors of HRH,b and HRH,c are strongly
anti-correlated, and also correlated with Q10 errors (Fig. A13). This indicates that using20

only NEE measurements does not allow full separation of temperature and humidity
impacts on Rh.

3.2.2 Parameters of the autotrophic respiration

The autotrophic respiration Ra is computed as the sum of the growth respiration Rg and
the maintenance respirations Rm,i from the various biomass pools i ,25

Ra =
∑
i

Rm,i + Rg, (9)
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The maintenance respiration follows from,

Rm,i =
{

max
(
0,c0,i ,j · (MRa · Ti + MRb)

)
× Bi

0.3LAI+1.4(1−exp(−0.5LAI))
LAI (leaves)

max
(
0,c0,i ,j · (MRa · Ti + MRb)

)
× Bi (other pools)

, (10)

where, c0,i ,j , Ti , Bi , LAI, MRa and MRb are the maintenance respiration coefficient
at 0 ◦C (PFT-dependent), the soil or surface temperature, the biomass, the leaf area
index, and two critical parameters that are optimized (Table 2), respectively. The growth5

respiration is calculated as a fraction of the remaining total biomass,

Rg = GRfrac · max
(
Ba −∆t ·

∑
Rm,i , 0.2 · Ba

)
, (11)

where Ba is the total biomass, ∆t the time step (one day), and GRfrac a fraction to be
optimized (Table 2). For all three parameters, the SS optimizations tend to reduce the
prior values (Fig. 4). Surprisingly, the MS values correspond approximately to the low-10

est values in the spread of SS optimizations (and not a median or mean value). This
result has to be related to the cross-dependence between parameters and the non-
linearity of the model. Figure A13 shows that MRa and MRb errors are anti-correlated
(−0.28), and similarly between MRa and GRfrac (−0.21), but also that GRfrac/Vcmax,
MRb/Q10, and MRa/Q10 error pairs are correlated. This indicates a range of different15

parameter sets may yield similar model performance, and similar model predictions.
Overall, the inversion system always reduces Rg and Rm, and consequently Ra. The

main reason for this is the improved fit to the summer carbon fluxes: the prior model
always underestimates the magnitude of summer uptake (see Sect. 3.1.1). Carbon
assimilation is unchanged or even reduced by the optimization (see next section), Rh is20

already drastically reduced to fit the winter NEE (Fig. 3), hence the optimization further
decreases the autotrophic respiration.

3.2.3 Parameters of the photosynthesis

The photosynthesis model developed by Farquhar et al. (1980) and Collatz et al. (1991)
is used for C3 plants in ORCHIDEE. GPP is an increasing function of the maximum25
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carboxylation capacity Vcmax, which is one of the parameters optimized here. The effec-
tive maximum carboxylation capacity Vcmax,effective is modulated by several coefficients,

Vcmax ,effective ∝ Vcmax · εleaf · εtemp · εwater, (12)

where εleaf, εtemp, and εwater are the leaf efficiency, the dependence on temperature5

and the dependence on soil water availability, respectively. The leaf efficiency is de-
termined by the relative leaf age, which is a fraction of the critical leaf age parameter
Lage,crit, following the law shown in Fig. A1 in Krinner et al. (2005). The temperature
efficiency varies between 1 at the optimal temperature Topt, and 0 at the minimum Tmin
and maximum temperature Tmax:10

εtemp =
(Tair − Tmin) × (Tair − Tmax)

(Tair − Tmin) × (Tair − Tmax) −
(
Tair − Topt

)2
, (13)

Tmin = cT min + bT min Tl + aT min T
2
l , (14)

Topt = cTopt + bToptTl + aToptT
2
l , (15)15

where aTi , bTi and cTi are specific coefficients of the quadratic relationship linking the
minimal and optimal temperatures to the annual mean temperature Tl. Parameters of
the maximal temperature, whose equation is analogous to Eqs. (14) and (15), are not
optimized due to the small sensitivity found in preliminary tests. The dependence factor
on soil water availability fwater is an increasing function of the water fraction f w available20

for the plant in the root zone, represented by a double bucket scheme (Ducoudre et al.,
1993).
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fw is calculated based on the exponential root profile Humcste along the soil depth
Dpucste, both of which are optimized:

fw = xtop exp
(
−HumcsteDpucsteatop

)
+
(
1 − xtop

)
exp

(
−HumcsteDpucsteadeep

)
, (16)

where xtop, atop and adeep are a normalized coefficient related to the wetness of the
top soil water reservoir, and the dry fraction of the top/deep soil water reservoirs, re-5

spectively. The maximum leaf area index LAIMAX is also optimized, and the stomatal
conductance gs is expressed following (Ball et al., 1987),

gs = max
(
Gs,slope

GPP × hr

Ca
+ Gs,c,Gs,c

)
, (17)

where Gs,slope is optimized. hr, Ca and Gs,c are the air relative humidity (%), the atmo-
spheric CO2 concentration, and an offset fixed to 0.01 for the current PFT, respectively.10

The optimized values of the photosynthesis parameters can be classified in three
categories:

– Those reducing carbon assimilation: decrease of Gs,slope, LAImax, Dpucste and
the increase of values for restriction-related parameters such as cT,opt and cT,min
(Fig. 4).15

– Those slightly increasing GPP: increased SLA (with a large associated error).

– Those with no significant trend, as Vcmax.

Overall, this combination of optimized parameters results in a decrease of the carbon
assimilation, as discussed in Sect. 3.5.1. Note that Vcmax has strong error correlations
with other parameters: Gs,slope (−0.48), cT,opt (0.73), and Lage,crit (−0.97) (Fig. A13).20

The same applies to the two parameters cT,opt and cT,min involved in the temperature
dependence of the photosynthesis efficiency, which are significantly anti correlated
(−0.45). These correlation indicates that various combinations of these parameter val-
ues may result in decreases in the carbon assimilation. We checked whether leaving
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Ra parameters out of the optimization would lead to an increase of GPP, but the ef-
fect is rather weak: the average annual assimilated carbon changes by less than 2 %
(not shown), with a substantially worse fit to summertime NEE. We deduce that cli-
mate dependencies of photosynthesis and autotrophic respiration are different enough
to partially optimize the two processes with only daily mean NEE data. In other words,5

it is not necessary to use separate GPP and Reco fluxes, or day and night time fluxes,
as model constraints.

3.2.4 Parameters of the evapotranspiration

In this study, we optimize three parameters directly related to the energy balance:
Gs,slope, Z0overheight, and K albedo,veg. For a given GPP, Gs,slope modulates the stomatal10

conductance and thus LE (see Eq. 17). Z0overheight is a characteristic rugosity length
used to calculate the aerodynamic resistance to mass transfer. Kalbedo,veg is a multiply-
ing factor of the vegetation albedo at each time step.
Gs,slope is generally decreased by the optimizations with a significant spread among

SS values (see Sect. 3.2.3), while Kalbedo,veg is more homogeneously increased. An15

enhanced albedo decreases the amount of radiation absorbed by the vegetation, hence
reducing the evapotranspiration (LE). Besides, a decreased value of Gs,slope induces a
lower stomatal conductance (for a constant GPP) and thus reduces the transpiration
from the leaves. These two factors combine to result in less LE after optimization (Fig. 3
and Appendix A): the prior annually averaged LE flux, equal to 39 W m−2, is reduced by20

23 % and 22 % after the MS and the SS optimizations, respectively. This is consistent
with the fact that the prior model overestimates LE throughout the year at most sites
(Sect. 3.1.1) except for DK-Sor, US-LPH, and US-UMB. At these three sites, LE is
underestimated by the prior model; the SS optimization consistently improves the fit
by increasing Gs,slope and decreasing Kalbedo,veg (Fig. 4), while the MS trend toward a25

reduction of LE further enhances the underestimation. Note finally that changes in the
values of Z0overheight are more difficult to interpret, due to the large spread among SS
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values; the associated errors remain large and are correlated with those from Gs,slope
(Fig. A13).

3.2.5 Parameters of the phenology

We optimize three critical phenology parameters: K pheno,crit, cT,senescence and Lage,crit.
Kpheno,crit is a multiplicative factor of the growing degree-days (GDD) threshold initiating5

spring leaf onset. In autumn, cT,senescence directly affects the threshold temperature Tcrit
triggering leaf senescence,

Tcrit = cT,senescence + bT,senescenceTl + aT,senescenceT
2
l , (18)

where Tl is the annual mean temperature. The higher the value of Kpheno,crit (resp.
cT,senescence) is, the later (resp. the earlier) in the year leaf onset (resp. leaf senes-10

cence) occurs. For Lage,crit the smaller it is, the sooner the leaf loses its photosynthesis
efficiency. Kpheno,crit is globally increased by the optimization, and so is cT,senescence
(Fig. 4). It means that the growing season is delayed and ends earlier, thus being
shortened, as compared to the prior model. Lage,crit is almost unchanged in MS case,
while the shift after optimization oscillates between −40 days and +35 days depending15

on the SS optimization considered. To further quantify these changes, for each site we
computed the smooth seasonal cycle of NEE, based on the signal decomposition pro-
posed in Thoning et al. (1989), and we used the days when the smooth curve crosses
the zero line to define the boundaries of the growing season (Fig. 5). Regarding the be-
ginning of the growing season, the prior simulation is too early by 2 to 19 days, except20

at DK-Sor (Fig. 5, first row). The optimizations improve the agreement with the data
with average positive shifts of 8 days in the SS case and 5 days after MS optimization,
although overcorrection was apparent at 3 sites (DK-Sor, FR-Fon and FR-Hes). Re-
garding leaf senescence (Fig. 5, second row), the prior model is generally too late in
ending the growing season, by 7 (±12) days, and both SS and MS optimizations tend25

to advance the date by 3.5 days on average. Overall, the length of the growing season

3337

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

is significantly improved in both MS and SS cases: the mean prior overestimation by
16 days is reduced to respectively 8 and 5 days.

The seasonality of evapotranspiration is tightly linked to that of photosynthesis. The
reduction of the latent heat flux after optimization (see Sect. 3.2.4) generally delays
the spring increase of LE and advance the subsequent autumnal decrease, in general5

agreement with the observations (Figs. 2 and A1 to A12).

3.3 Is the multi-site set of parameters the most generic one?

We have shown that the MS optimization is able to provide significant improvement in
the model results. However, one can wonder if deriving across-site information directly
from SS optimizations would not prove to be as efficient. Two methods have been con-10

sidered: directly using SS sets of parameters at the other sites, or deriving a mean set
of parameters calculated as the average of the twelve SS sets of parameters. In Fig. 6,
we show the model-data RMSs for NEE and LE at each site, resulting from applying 15
sets of parameters: prior model (green), the 12 SS sets of parameters (yellow, and red
for the parameters optimized at the given site), the MS set of parameters (blue), and the15

mean set of SS parameters (purple). Note that in the mean set of parameter, we keep
using the local SS-optimized carbon pool scaling factor KsoilC, instead of an averaged
value. Figure 6a first shows that transposing SS set of parameters most often results
in NEE RMSs significantly higher than in the corresponding SS and MS cases (yellow
bars higher than red and blue). This is less significant for LE, where one or more foreign20

SS set of parameters give RMS reductions similar to the local SS set of parameters
(Fig. 6b). We can deduce that in general the SS sets of parameters are not generic
enough to be transposed at other sites, and we can explain the small difference for LE
to the few LE-related parameters. Besides, the transposition of SS parameters to other
sites also gives hints regarding which sites do not “fit” in the group here studied: for25

example, the Sorø forest site (DK-Sor) shows high RMS for both fluxes whenever opti-
mized parameters from a different site are used, suggesting that this site is in some way
atypical relative to the other deciduous broadleaf forest sites in our analysis. Second,
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the MS optimization generally results in a better RMS reduction than when using the
mean set of SS parameters, with averaged RMS differences of 0.097 gC m−2 d−1 (NEE)
and 1.83 W m−2 (LE). These differences are larger than the averaged RMS difference
between MS and SS optimization (0.056 gC m−2 d−1 and 1.26 W m−2). It suggests that
the non-linearity of the model implies that a potentially generic set of parameters can-5

not simply be the average of site-specific values and that the MS optimization brings
additional information. In addition, we checked that using an averaged value also for
KsoilC in the mean parameter set (instead of the local SS value) results in much poorer
results (not shown), most likely because of the strong dependence of this parameter
to the land-use history at each site. Finally, there are a few sites where the mean set10

of parameters does better than the MS optimization for one, but not both, fluxes: i.e.,
UK-Ham for NEE, FR-Fon and US-WCr for LE. Figure 3 shows that in these cases, the
MS RMS for the corresponding flux is significantly larger than the SS one. We can thus
argue that these sites might not fit in the multi-site group with respect to the mentioned
fluxes, so that a site-specific parameterization would be needed in these cases.15

3.4 Information content of the different observations

In order to estimate the respective contribution NEE and LEE to the assimilation, we
conducted the MS optimizations using either NEE or LE, but not both, fluxes. The im-
pact on the RMS is shown in Fig. 7, which compares the results of the different cases,
with and without each type of data. Regarding the fit to NEE, the performance of the20

optimization is very similar at most sites whether LE data is used or not, whereas us-
ing only LE data results in a significant degradation of the NEE model-data fit from
the prior in most cases (averaged RMS increased by 22 %). Regarding the modeled
LE, the situation is almost symmetrical: using or not NEE barely affects the perfor-
mance of the model after optimization. One can however notice that the assimilation25

of just NEE does not degrade the fit, and even improves it: only 1 % improvement
on daily time scale (versus 16 % with LE data), but 15 % on yearly average (versus
29 %, not shown). Regarding the parameters, using both fluxes helps to reduce the
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error correlations between Gs,slope and cT,opt (0.52 without NEE, −0.27 without LE,
−0.11 with both (not shown)), and the use of NEE suppresses error correlation of the
SLA/Gs,slope and SLA/cT,opt pairs (0.23 and 0.21 without NEE, 0.03 and 0.07 with both
fluxes, not shown). At the same time, error correlations appear between Gs,slope and
others parameters such as Lage,crit, Z0overheight and Kalbedo,veg, when adding LE to NEE5

in the assimilated data (not shown). Overall, assimilating LE data brings additional in-
formation beyond what is achieved with NEE alone, suppressing some photosynthesis-
parameter error correlations, and reducing the parameters errors themselves in most
cases.

3.5 Evaluation of the optimized model10

A crucial step following any optimization procedure is to assess whether the new set
of parameters improves the overall model performance, using additional data (i.e., not
used in the assimilation).

3.5.1 Optimized GPP and Reco

We first compare the model GPP and Reco fluxes after the optimization with estimates15

derived directly from the observations (see Sect. 2.5.1). Although not independent,
these “data-oriented” estimates provide valuable insights to the model performance.
Figure 8 shows the seasonal cycle of GPP and Reco at two of the sites for a 2-yr time
period (the full period at each sites can be found in the Appendix A). In general, the
optimizations decrease the seasonal amplitude of GPP and Reco at these sites, with20

a reduction in the growing season length, confirming the patterns shown in Fig. 5 and
discussed in Sect. 3.2. Besides, we observe that the model-data fit is generally im-
proved both for Reco and GPP, although more significantly for Reco. This is quantified
in Fig. A14 where the RMSs for the different cases are shown for both fluxes at dif-
ferent time scales, in the same way as in Fig. 3. Unsurprisingly, the most important25

RMS reduction happens for Reco on the yearly time scale (an average decrease of
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54 % after MS optimization, and 59 % in the SS case), consistent with the changes in
initial carbon pools discussed in Sect. 3.2.1. More specifically, the amplitudes of the
seasonal cycles (see Figs. 8 and A1 to A12) show a strong decrease of Reco at most
sites, compared with the overestimation of this flux by the prior model. In some cases,
however, the correction after optimization is either too small (DE-Hai, US-Bar, and US-5

LPH) or too large (DK-Sor). Regarding GPP, there is also an overestimation by the prior
model at most sites (except DK-Sor and UK-Ham): the average annual GPP is equal to
1754 gC m−2 yr−1, as compared to the 1463 gC m−2 yr−1 given by the flux-partitioning
estimates. After MS and SS optimizations, the reduction in carbon assimilation respec-
tively leads to annual GPPs of 1352 and 1479 gC m−2 yr−1.10

Although an in-depth analysis with site-specific gross flux estimates at all sites is
beyond the scope of this paper, we have evaluated the performance of the model
for the total annual fluxes at one site (FR-Hes). To this end, we use the annual
flux estimates shown in Granier et al. (2008) (also based on eddy-covariance flux-
partitioning), including Ra and Rh (calculated respectively as 72.2 % and 27.8 % of15

Reco. First, one should notice that during the 2001–2003 period there are significant
differences between the average annual gross fluxes from Granier et al. (2008) (GPP:
1269 gC m−2, Reco: 985 gC m−2) and those derived from the “Lathuile” FLUXNET dis-
tribution and used in this study (GPP: 1770 gC m−2, Reco: 1208 gC m−2), linked to dif-
ferences in flux-partitioning methods. For Reco, both datasets indicate a large over-20

estimation by the prior model (1814 gC m−2), significantly corrected by both optimiza-
tions (MS: 1087 gC m−2, SS: 1269 gC m−2). These annual totals are still high com-
pared to Granier et al. (2008). Regarding GPP, the prior model either slightly or signifi-
cantly overestimates the carbon assimilation (1863 gC m−2), depending on the dataset
considered. With the flux-partitioning of Reichstein et al. (2005), the optimization re-25

duces GPP too much, especially in the MS case (MS: 1362 gC m−2, SS: 1692 gC m−2).
With Granier et al. (2008) estimates, the optimized value becomes closer to the data.
The annual values of Ra (711 gC m−2) and Rh (274 gC m−2) in Granier et al. (2008)
indicate that the reduction of both types of respirations through the optimization is
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coherent with the data-oriented estimates: from 856 gC m−2 (prior) to 478 gC m−2 (MS)
and 666 gC m−2 (SS) for Ra, and from 957 gC m−2 (prior) to 608 gC m−2 (MS) and
602 gC m−2 (SS) for Rh. One should however notice that even after optimization, the
heterotrophic respiration remains twice as high as the estimates. In the mean time, the
autotrophic respiration is decreased beyond necessary, especially in the MS case.5

Overall, our optimization scheme is able to provide a set of parameters which sig-
nificantly improves the simulation of assimilation and respiration processes, although
we have chosen to assimilate daily NEE and not to separate between nighttime and
daytime values.

3.5.2 Global scale evaluation: use of MODIS data10

One objective of the data assimilation system described in this study is to use local
information provided by flux towers measurements in order to improve continental to
global scale simulations of the carbon and water balance, with an optimized set of
parameters. Such improvement is not guaranteed and the evaluation of the simulated
fluxes at large scales for the DBF ecosystem considered in this study after the MS15

optimization is thus a necessary step.
We use below the information on temporal variations of the vegetation activity re-

trieved globally by MODIS and not on the absolute values of these measurements (see
Sect. 2.5.2). We thus correlate the satellite-derived NDVI time-series against those of
the Fraction of absorbed Photosynthetically Active Radiation (FPAR) modeled by OR-20

CHIDEE. The method has been extensively described in (Maignan et al., 2011), only a
brief summary and its adaptation to our study are given here. FPAR is estimated from
modeled LAI with a simple Beer’s law:

FPAR = 1 − exp (−0.5 × LAI) . (19)

Correlations are computed using weekly time series over the period 2000–2008. Note25

that the NDVI data, originally at the 5-km spatial resolution were aggregated at the
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resolution of the vegetation model (determined by the meteorological forcing, here the
ERA-Interim, i.e. 0.7 degree). The mesh cells where no clear annual cycle is visible are
ignored in the calculation, i.e., when both observed and modeled time series have a
standard deviation lower than 0.04. The analysis is made only for the pixels with at least
50 % of DBF (the PFT considered in the optimization). We use a high-resolution veg-5

etation map such as CORINE over Europe (Heymann et al., 1993) and UMD (Hansen
et al., 2000) to assign a PFT to each satellite pixel, while model boxes are assigned
to the PFT whose fraction exceeds 50 % (box unused otherwise). Finally, the spatial
averaging of satellite NDVI data is made over pixels where the assigned PFT matches
the model box PFT.10

Changes in NDVI/FPAR correlations obtained either with the prior model or the MS-
optimized model are shown in Fig. 9 for several regions (median value). Note that the
boxes used for the calculation are shown in grey on the background map. First one
should notice that the correlations with the prior model are relatively high for the three
Northern Hemisphere regions (North America, Europe, Asia), with values over 0.88.15

On the other hand, in the Southern Hemisphere the prior model performances are
much lower, with correlations below 0.5. If we now consider the changes brought by
the MS optimization, we find that the correlations are improved everywhere except in
Oceania. In the Northern Hemisphere, the MS optimization improves the phase agree-
ment between NDVI and FPAR by nearly 4 %, with posterior correlations above 0.91. In20

the southern areas, the MS optimization leads to contrasting effects. While it does not
affect much South America (+7 %), there is a significant improvement in Africa (+36 %)
and a strong degradation in Oceania (−28 %). Globally, we observe an improvement
brought by the MS optimization with a median correlation factor going from 0.83 to 0.88
(not shown). As mentioned in Maignan et al. (2011), there is no expectation of a rig-25

orous correspondence between NDVI and FPAR temporal variations because NDVI is
impacted by other variables than FPAR (such as vegetation geometry, soil reflectance,
fractional cover, mixture of grass understory with trees, measurement noise, or leaf
spectral signature), so that a perfect correlation should not be taken as a target. The
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much poorer results in the Southern Hemisphere could either reveal a problem of the
phenology model (purely temperature-dependent for the DBF PFT in ORCHIDEE), or
simply point out the limit of using a single generic temperate DBF classification at the
global scale.

4 Conclusions5

In the framework of eddy-covariance flux data assimilation in biosphere models, we
have sought to expand the geographically-limited approach of site-scaled model opti-
mizations. To this end, we have built a data assimilation system able to simultaneously
integrate the information given by several measurements sites in order to derive a
unique set of optimized model parameters. This so-called multi-site (MS) optimization10

procedure has been here focused on one type of ecosystem, the temperate deciduous
broadleaved forests (DBF).

The MS optimization is able to provide daily model-data RMS reductions (with re-
spect to the prior model) that are often as good as the single-site (SS) optimizations.
This consistency is also true at yearly timescale where the NEE misfit is reduced by15

half for both the single-site and multi-site cases. The major contribution to the yearly
improvement is the scaling of the initial carbon pools, governed by the only parame-
ter purposely kept site-specific in the MS case. This scaling is crucial because of the
discrepancy between the state of the modeled ecosystem after the initial spin-up pro-
cedure, corresponding to a mature ecosystem, and the young forests mostly used in20

this study (with lower soil carbon content). Note however that this first order correction
remains linked the other respiration parameters, and overall the assimilation of net car-
bon fluxes does not allow to fully separate between pool size and turn over rate effects
in the calculation of the respiratory fluxes (see error correlations in Fig. A13). Additional
measurements of soil carbon pool content could be used in the future to obtain cross25

constraints on all factors controlling the heterotrophic respiration.

3344

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The autotrophic respiration (Ra) is also globally reduced after optimization. Using to-
tal ecosystem respiration derived from NEE partitioning techniques we validated the re-
duction in model respiration after optimization. However, we could not assess whether
the autotrophic reduction may compensate for an insufficiently reduced heterotrophic
component.5

In parallel, the carbon assimilation is slightly reduced at most sites following optimiza-
tion. Comparisons with estimations of GPP derived from NEE indicate that this correc-
tion is globally relevant, but the summer carbon uptake still does not go deep enough
after optimization at half of the sites, suggesting model structural errors. Besides, we
have observed that the growing season is consistently shortened as compared to the10

prior overestimation, but remains too long at most sites.
The phenology is also improved, with a shortening of the growing season consistent

with the observations. Similarly, in an evaluation of more than a dozen different ter-
restrial biosphere models, Richardson et al. (2012) found that most models tended to
over-estimate the growing season length at five North American deciduous broadleaf15

forests, resulting in misrepresentation of the seasonality of leaf area index as well as
photosynthetic uptake. Furthermore, most models could not successfully predict inter-
annual variability in spring or autumn phenology, either. Note that Santaren et al. (2012)
investigate more in details the potential of ORCHIDEE to simulate year-to-year varia-
tions in phenology associated to climate anomalies.20

Regarding the water cycle, the prior model generally overestimates the latent heat
flux. Both MS and SS optimization decrease the evapotranspiration and globally im-
prove the model-data fit with a reduced stomatal conductance and a larger vegetation
albedo. Additionally, we observed abnormally high modeled values of LE in winter at
some sites, most likely caused by an inconsistency in the simulation/parameterization25

of the snow sublimation in ORCHIDEE, as the parameters associated with sublimation
were not optimized here.

In general, we have observed comparable parameter changes between SS and MS
optimizations, even if the former provides (not surprisingly) somewhat better model
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data fits. Performing MS optimization is more complex in terms of optimization code
and we thus investigated its actual benefit as compared to a series of SS optimization.
It turns out that for more than half of the parameters the MS values are close to the
means of the SS values. This was not the case for all the parameters we optimized,
presumably because of nonlinearities in the model structure. Overall the MS set of5

parameters provides a significantly better fit than the mean of the SS sets, while using
of a single SS sets at others sites is most likely to degrade the performances of the
model. This consistency between individual and grouped optimizations contrasts with
the results of Groenendijk et al. (2011) which showed a significant degradation of the
model-data agreement when going from sites-specific to PFT-generic parameters, in10

an analysis carried with a different model and optimization scheme.
Regarding the assimilated data, we observed that the amount of information brought

by both fluxes (NEE and LE) is complementary: it greatly improves the fit to each of the
two outputs almost independently.

Finally, we have evaluated the performance of the phenology in the ORCHIDEE15

model at the global scale via the correlation coefficient between modeled FPAR and
measured NDVI, restricted to the DBF ecosystem. Our analysis shows that the prior
model does far better in the northern than in the Southern Hemisphere. From this start-
ing point, the MS optimization brings a slight improvement in the Northern Hemisphere,
and contrasting results in the Southern Hemisphere: significant improvement in South20

Africa but a degradation in Australia witch advocates for a different phenology scheme
in DBF of more arid regions. The global correlation median shifts from 0.83 to 0.88.
Note that only temperate DBF sites from the Northern Hemisphere were used in the
assimilation; biogeographically and ecologically, the forests of Australia are very differ-
ent from those of northern Europe, for example, and so it is perhaps not surprising that25

the model performed poorly there.
This work should be considered as a guideline for the assimilation of eddy-

covariance data at several sites, within Carbon Cycle Data Assimilation System (CC-
DAS) (Rayner et al., 2005) together with complementary data streams. It emphasizes
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on the strengths but also the limitations of using site-specific daily NEE. Although the
temporal variations of NEE bring specific information on the gross fluxes, assimilat-
ing additional data would help to better distinguish between processes, and potentially
better constrain sensitivities to environmental drivers. The separation between daytime
and nighttime NEE, as well as data on within-tree carbon allocation, leaf area index5

and/or phenology, soil respiration fluxes, biomass and litter/soil C pools, could also
be used as model constraints, where such data are available. A multiple-constraints
approach can be used to improve the internal dynamics of the modeled system, and
reduce bias and model error when the model is used for extrapolation or projection in
time or space (Richardson et al., 2010). We also plan to extend our method to other10

types of ecosystems and to extend the evaluation process using additional independent
data at the global scale. For example, the seasonal cycle contained in the atmospheric
CO2 concentration reflects primarily that of the terrestrial biosphere and could be used
through an atmospheric transport model. Simulated LE flux can be spatially integrated
and evaluated against measured stream flows for large basins. Finally, inter-annual15

variations of the model phenology could be compared for instance to more than 20 yr
of NDVI data from the AVHRR instrument.
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Maignan, F., Bréon, F.-M., Chevallier, F., Viovy, N., Ciais, P., Garrec, C., Trules, J., and Mancip,
M.: Evaluation of a Global Vegetation Model using time series of satellite vegetation indices,
Geosci. Model Dev., 4, 1103–1114, doi:10.5194/gmd-4-1103-2011, 2011.

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.: Mechanistic
scaling of ecosystem function and dynamics in space and time: Ecosystem Demography10

model version 2, J. Geophys. Res.-Biogeosci., 114, G01002, doi:10.1029/2008jg000812,
2009.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B.,
Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net
Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty15

estimation, Biogeosciences, 3, 571–583, doi:10.5194/bg-3-571-2006, 2006.
Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N, P and S in Grassland Soils

– a Model, Biogeochemistry, 5, 109–131, 1988.
Pilegaard, K., Hummelshoj, P., Jensen, N. O., and Chen, Z.: Two years of continuous CO2

eddy-flux measurements over a Danish beech forest, Agr. Forest Meteorol., 107, 29–41,20

2001.
Prevost-Boure, N. C., Soudani, K., Damesin, C., Berveiller, D., Lata, J. C., and Dufrene, E.:

Increase in aboveground fresh litter quantity over-stimulates soil respiration in a temperate
deciduous forest, Appl. Soil Ecol., 46, 26–34, doi:10.1016/j.apsoil.2010.06.004, 2010.

Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H.: Two decades25

of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global
Biogeochem. Cy., 19, Gb2026, doi:10.1029/2004gb002254, 2005.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C.,
Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H.,
Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Migli-30

etta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen,
J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net

3351

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003gb002199
http://dx.doi.org/10.5194/bg-5-1311-2008
http://dx.doi.org/10.5194/gmd-4-1103-2011
http://dx.doi.org/10.1029/2008jg000812
http://dx.doi.org/10.5194/bg-3-571-2006
http://dx.doi.org/10.1016/j.apsoil.2010.06.004
http://dx.doi.org/10.1029/2004gb002254


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ecosystem exchange into assimilation and ecosystem respiration: review and improved algo-
rithm, Glob. Change Biol., 11, 1424–1439, doi:10.1111/j.1365-2486.2005.001002.x, 2005.

Richardson, A. D., Mahecha, M. D., Falge, E., Kattge, J., Moffat, A. M., Papale, D., Reichstein,
M., Stauch, V. J., Braswell, B. H., Churkina, G., Kruijt, B., and Hollinger, D. Y.: Statistical
properties of random CO2 flux measurement uncertainty inferred from model residuals, Agr.5

Forest Meteorol., 148, 38–50, doi:10.1016/j.agrformet.2007.09.001, 2008.
Richardson, A. D., Williams, M., Hollinger, D. Y., Moore, D. J. P., Dail, D. B., Davidson, E. A.,

Scott, N. A., Evans, R. S., Hughes, H., Lee, J. T., Rodrigues, C., and Savage, K.: Estimating
parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint
constraints, Oecologia, 164, 25–40, doi:10.1007/s00442-010-1628-y, 2010.10

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G. S., Chen,
J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough,
C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Migliavacca, M., Monson,
R. K., Munger, J. W., Poulter, B., Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer,
K., Tian, H. Q., Vargas, R., Verbeeck, H., Xiao, J. F., and Xue, Y. K.: Terrestrial biosphere15

models need better representation of vegetation phenology: results from the North Ameri-
can Carbon Program Site Synthesis, Glob. Change Biol., 18, 566–584, doi:10.1111/j.1365-
2486.2011.02562.x, 2012.

Santaren, D., Peylin, P., Viovy, N., and Ciais, P.: Optimizing a process-based ecosystem model
with eddy-covariance flux measurements: A pine forest in southern France, Global Bio-20

geochem. Cy., 21, GB2013, doi:10.1029/2006gb002834, 2007.
Santaren, D., Bacour, C., Peylin, P., and Ciais, P.: Fluxnet data to optimize and validate a ter-

restrial biosphere model, in preparation, 2012.
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais,

P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., and Woodward, F. I.: Evaluation25

of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks
using five Dynamic Global Vegetation Models (DGVMs), Glob. Change Biol., 14, 2015–2039,
doi:10.1111/j.1365-2486.2008.01626.x, 2008.

Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J., Henderson-Sellers, A.,
Robock, A., Vinnikov, K. Y., Mitchell, K., Boone, A., Braden, H., Chen, F., Cox, P. M., de30

Rosnay, P., Dickinson, R. E., Dai, Y. J., Duan, Q., Entin, J., Etchevers, P., Gedney, N., Gu-
sev, Y. M., Habets, F., Kim, J., Koren, V., Kowalczyk, E. A., Nasonova, O. N., Noilhan, J.,
Schaake, S., Shmakin, A. B., Smirnova, T. G., Verseghy, D., Wetzel, P., Yue, X., Yang, Z.

3352

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1111/j.1365-2486.2005.001002.x
http://dx.doi.org/10.1016/j.agrformet.2007.09.001
http://dx.doi.org/10.1007/s00442-010-1628-y
http://dx.doi.org/10.1111/j.1365-2486.2011.02562.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02562.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02562.x
http://dx.doi.org/10.1029/2006gb002834
http://dx.doi.org/10.1111/j.1365-2486.2008.01626.x


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

L., and Zeng, Q.: The representation of snow in land surface schemes: Results from PILPS
2(d), J. Hydrometeorol., 2, 7–25, 2001.

Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J. Y., Novick, K. A., Uebelherr, J. M.,
and Oren, R.: An evaluation of models for partitioning eddy covariance-measured net
ecosystem exchange into photosynthesis and respiration, Agr. Forest Meteorol., 141, 2–18,5

doi:10.1016/j.agrformet.2006.09.001, 2006.
Tarantola, A.: Inverse problem theory: methods for data fitting and model parameter estimation,

Elsevier, Amsterdam, 1987.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric Carbon-Dioxide at Mauna Loa

Observatory .2. Analysis of the Noaa Gmcc Data, 1974–1985, J. Geophys. Res.-Atmos., 94,10

8549–8565, 1989.
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald,

D., Czikowsky, M., and Munger, J. W.: Factors controlling CO(2) exchange on timescales
from hourly to decadal at Harvard Forest, J. Geophys. Res.-Biogeosci., 112, G02020,
doi:10.1029/2006jg000293, 2007.15

Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., and Ciais, P.: Seasonal patterns of
CO2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model,
J. Geophys. Res.-Biogeosci., 116, G02018, doi:10.1029/2010jg001544, 2011.

Vermote, E., Justice, C. O., and Breon, F. M.: Towards a Generalized Approach for Correction of
the BRDF Effect in MODIS Directional Reflectances, IEEE T. Geosci. Remote, 47, 898–908,20

doi:10.1109/Tgrs.2008.2005977, 2009.
Vermote, E. F., El Saleous, N. Z., and Justice, C. O.: Atmospheric correction of MODIS data in

the visible to middle infrared: first results, Remote Sens. Environ., 83, 97–111, 2002.
Wang, Y. P., Leuning, R., Cleugh, H. A., and Coppin, P. A.: Parameter estimation in surface

exchange models using nonlinear inversion: how many parameters can we estimate and25

which measurements are most useful?, Glob. Change Biol., 7, 495–510, 2001.
Wang, Y. P., Baldocchi, D., Leuning, R., Falge, E., and Vesala, T.: Estimating parameters in

a land-surface model by applying nonlinear inversion to eddy covariance flux measure-
ments from eight FLUXNET sites, Glob. Change Biol., 13, 652–670, doi:10.1111/j.1365-
2486.2006.01225.x, 2007.30

s Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carval-
hais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C.

3353

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.agrformet.2006.09.001
http://dx.doi.org/10.1029/2006jg000293
http://dx.doi.org/10.1029/2010jg001544
http://dx.doi.org/10.1109/Tgrs.2008.2005977
http://dx.doi.org/10.1111/j.1365-2486.2006.01225.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01225.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01225.x


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

M., and Wang, Y. -P.: Improving land surface models with FLUXNET data, Biogeosciences,
6, 1341–1359, doi:10.5194/bg-6-1341-2009, 2009.

3354

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/bg-6-1341-2009


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. List of the sites.

Site Location Main tree species Stand age LAI Period References

DE-Hai 51.079◦ N, 10.452◦ E Beech, ash, maple 1–250 5 2000–2006 Knohl et al. (2003)

DK-Sor 55.487◦ N, 11.646◦ E European beech 84 4.8 2004–2006 Pilegaard et
al. (2001)

FR-Fon 48.476◦ N, 2.78◦ E Oak 100–150 5.1 2006 Prevost-Boure et
al. (2010)

FR-Hes 48.674◦ N, 7.064◦ E European beech 35 4.8–7.6 1998–2004 Granier et
al. (2008)

JP-Tak 36.146◦ N, 137.423◦ E Oak, birch 50 – 1999–2004 Ito et al. (2006)

UK-Ham 51.121◦ N, 0.861◦ W Oak (quercus robur
& quercus patraea)

70 – 2004–2005 http://www.forestry.
gov.uk/website/
forestresearch.
nsf/ByUnique/
INFD-62NBUH

US-Bar 44.065◦ N, 71.288◦ W American beech,
sugar, yellow birch

73 3.6–4.5 2004–2005 Jenkins et
al. (2007)

US-Ha1 42.538◦ N, 72.172◦ W Red oak, red maple 75–110 – 2003–2006 Urbanski et
al. (2007)

US-LPH 42.542◦ N, 72.185◦ W Red oak 45–100 4–5 2003–2004 Hadley et al. (2008)

US-MOz 38.744◦ N, 92.2◦ W White & black oaks,
shagbark hickory,
sugar maple, east-
ern red cedar

– – 2005–2006 Gu et al. (2006)

US-UMB 45.56◦ N, 84.714◦ W Bigtooth aspen,
trembling aspen

90 3.7 1999–2003 Curtis et al. (2006)

US-WCr 45.806◦ N, 90.08◦ W Sugar maple, bass-
wood, green ash

60–80 5.3 1999–2004 Cook et al. (2004)
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Table 2. ORCHIDEE parameters optimized in this study.

Parameter Description Prior value Prior range σprior

Photosynthesis

Vcmax Maximum carboxylation rate
(µmol m−2 s−1)

55 27–110 33.2

Gs,slope Ball-Berry slope 9 3–15 4.8

cT,opt Offset for optimal photosynthesis
temperature relationship (◦C)

26 6–46 16

cT,min Offset for minimal photosynthesis
temperature relationship (◦C)

−2 (−7)−3 4

SLA Specific leaf area (LAI per dry matter
content, m2 g−1)

0.026 0.013–0.05 0.0148

LAIMAX Maximum LAI per PFT (m2 m−2) 5 3–7 1.6

Klai,happy LAI threshold to stop carbohydrate use 0.5 0.35–0.7 0.14

Phenology

Kpheno,crit Multiplicative factor for growing season
start threshold

0.5 2 0.6

cT,senescence Offset for temperature threshold for
senescence (◦C)

12 2–22 8

Lage,crit Average critical age for leaves (days) 180 80–280 80

Soil water availability

Humcste Root profile 0.8 0.2–3 1.12

Dpucste Total depth of soil water pool (m) 2 0.1–6 2.36
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Table 2. Continued.

Parameter Description Prior value Prior range σprior

Respiration

Q10 Temperature dependence of
heterotrophic respiration

1.99372 1–3 0.8

KsoilC Multiplicative factor of initial carbon
pools

1 0.1–2 0.76

HRH,b First-degree coefficient of the
function for moisture control factor of
heterotrophic respiration

2.4 2.1–2.7 0.24

HRH,c Offset of the function for moisture con-
trol factor of heterotrophic respiration

−0.29 (−0.59)–0.01 0.24

MRa Slope of the affine relationship be-
tween temperature and maintenance
respiration

0.16 0.05–0.48 0.172

MRb Offset of the affine relationship be-
tween temperature and maintenance
respiration

1 0.1–2 0.76

GRfrac Fraction of biomass available for
growth respiration

0.28 0.1–0.5 0.16

Energy balance

Z0overheight Characteristic rugosity length (m) 0.0625 0.02-0.1 0.032

Kalbedo,veg Multiplying factor for surface albedo 1 0.8–1.2 0.16
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Fig. 1. Locations of the measurements sites.
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Fig. 2. Seasonal cycle of NEE and LE at (a) Hainich and (b) Harvard Forest sites, smoothed
with a 15-day moving average window. The observations (black) are compared with the prior
model (grey), the MS optimization (blue) and the SS optimization (orange). The error bars give
the total flux uncertainties. The annual carbon budget (gC m−2) and the annually averaged LE
flux (W m−2) are given between brackets.
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Fig. 3. Model-data RMSs at different time scales for (a) NEE and (b) LE. Prior model is in grey,
MS optimization in blue and SS optimization in orange.
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Fig. 5. Starting day, ending day, and length of the growing season (average over all the years
available at each site). Measurements are in black, prior model in grey, MS-optimized model in
blue, and SS-optimized model in orange.
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Fig. 7. Daily model-data RMSs at the sites for (a) NEE and (b) LE. Prior model is in grey, and
compared with three MS optimizations using different sets of data: LE only (yellow), NEE only
(orange), and LE+NEE (blue).
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Fig. 8. Seasonal cycle of GPP and Reco at (a) Hainich and (b) Harvard Forest sites, smoothed
with a 15-day moving average window. The estimations derived from flux-partitioning of NEE
(black) are compared with the prior model (grey), the MS optimization (blue) and the SS opti-
mization (orange). The averaged annual fluxes in gC m−2 are given between brackets.
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Fig. 9. Continental medians of NDVI/FPAR correlation of prior model (grey) and after MS opti-
mization (blue), using weekly time series for the 2000–2008 period and the ERA-I simulation.
Correlations are only calculated for boxes with dominant DBF ecosystem and where cycles in
NDVI and FPAR are detected (orange boxes on the map).
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Fig. A1. Seasonal cycles of NEE, LE, GPP and Reco at Hainich site, smoothed with a 15-day
moving average window. The observations (black) are compared with the prior model (grey),
the MS optimization (blue) and the SS optimization (orange). The annual average carbon flux
(gC m−2) and the annually averaged LE flux (W m−2) are given between brackets.
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Fig. A2. Same as Fig. A1 at Soroe-LilleBogeskov site.
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Fig. A3. Same as Fig. A1 at Fontainebleau site.
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Fig. A4. Same as Fig. A1 at Hesse Forest site.
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Fig. A5. Same as Fig. A1 at Takayama site.
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Fig. A6. Same as Fig. A1 at Hampshire site.
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Fig. A7. Same as Fig. A1 at Bartlett Experimental Forest site.
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Fig. A8. Same as Fig. A1 at Harvard Forest site.
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Fig. A9. Same as Fig. A1 at Little Prospect Hill site.

3375

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3317/2012/bgd-9-3317-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 3317–3380, 2012

Constraining a
global ecosystem

model with multi-site
eddy-covariance data

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2005.0 2005.5 2006.0 2006.5 2007.0
0

5

10

15

G
PP

 (g
C/

m
2 /d

)

Obs Prior MS SS
(1421) (1941) (1531) (1521)

2005.0 2005.5 2006.0 2006.5 2007.0
0

2

4

6

8

10

12

R e
co

 (g
C/

m
2 /d

)

Obs Prior MS SS
(1070) (1828) (1162) (1273)

2005.0 2005.5 2006.0 2006.5 2007.0

-4

-2

0

2

4

6

N
EE

 (g
C/

m
2 /d

)

Obs Prior MS SS
(-351) (-113) (-368) (-247)

2005.0 2005.5 2006.0 2006.5 2007.0
0

50

100

150

LE
 (W

/m
2 )

Obs Prior MS SS

US-MOz

(48) (54) (42) (46)

Fig. A10. Same as Fig. A1 at Missouri Ozark site.
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Fig. A11. Same as Fig. A1 at Univ. of Mich. Biological Station site.
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Fig. A12. Same as Fig. A1 at Willow Creek site.
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Fig. A13. MS posterior parameter error correlation matrix.
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Fig. A14. Model-data RMSs at different time scales for (a) GPP and (b) Reco. Prior model is in
grey, MS optimization in blue, and SS optimization in orange.
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